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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1895

EFFECT OF ASPECT RATIO ON UNDAMPED TORSIONAL
OSCILLATIONS OF A THIN RECTANGULAR
WING IN SUPERSONIC FLOW

By Charles E. Watkins
SUMMARY

The theory for single—degree torsional ingtability of a two—
dimensional wing oscillating in a supersonic stream is extended so asg
to apply to a finite rectangular wing oscillating in a supergonic stream.
The velocity potential and aerodynamic—torsional—moment coefficient
based on the linearized equations of motion for small disturbances are
derived by means of appropriate distributions of moving sources and
doublets. The aerodynamic—torsional-moment coefficient thus derived is
combined with a mechanical-damping coefficient to study the effect of
aspect ratio on the undamped torsional oscillations of a finite rec—
tangular wing. Decreasing the aspect ratio of the wing is found to
have a highly stabilizing effect on the undamped torsional oscillations.
Results of some selected calculations are presented in several figures.

Tt is pointed out that second—order thickness effects may be of
gignificance.

INTRODUCTION

In theoretical studies of an oscillating wing in two—-dimensional
supersonic flow Possio noted, reference 1, that under certain conditlons
a single—degree torsional instability is possible. This instability,
also sometimes known as a type of "single—degree flutter," was briefly
discussed by Temple and Jahn in reference 2 and has sincs been further
investigated by Garrick and Rubinow in reference 3, by W. P. Jones in
reference 4, and by Cheilek and Frigsel in reference 5.

Tt is pointed out in reference 3 that this single—degree flutter
is due to the wing being negatively damped in torsion and that the
negative damping is associated with a change in sign of the torsional-
damping coefficient; furthermore in the two-dimensional case the

ingtability may take place in a low supersonic Mach number
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range (1 < Mach number < {/2.5), at low values of the frequency parameter,
and for axis—of-rotation locations forwsrd of a point two-thirds of the
chord distance from the leading edge. This phenomenon may be of
particular importance in connection with high—speed airplanes that are
flown in (or through) the range of low supersonic Mach numbers at which
the phenomenon may take place. Although in general discussions this
phenomenon is usually associated with the word "wing" the theory applies
as well to an aileron when the aileron is considered as a separate

- degree of freedom. Hereafter in this discussion the word "wing" may
generally be given the broader interpretation of "wing or aileron."

The purpose of the present paper is to extend the theoretical
investigation of the single—degree torsional instability of a wing
oscillating in two—dimensional supersonic flow, as presented in
reference 3, to a finite rectangular wing and to determine the effect
of aspect ratio on the undamped torsional oscillations of such & wing.
It is assumed that the negative damping phenomenon in three—dimensional
flow, like that in two-dimensional flow, is determined mainly by low—
order terms of a low frequency and that only the effect of the first
power of the frequency must be considered to get a good approximation
of its total effect.

In order to obtain the three—dimensional velocity potential and
aerodynamic—~damping coefficient the method suggested by Garrick and
Rubinow in reference 6, which is briefly discussed in subsequent
paragraphs, is applied to a thin, flat, rectangular wing performing
slow, sinugoidal, torsional oscillations in a supersonic stream. The
particular wing treated is such that the Mach cones emanating from the
foremost point of each tip do not intersect the opposite tip ahead of
the trailing edge of the wing.

The procedure developed herein may be readily extended to apply to
any plan form with supersonic trailing edge as long as other edges that
might be in the regions of mixed supsrsonic flow are continuously straight.
What might be a more desirable extension would be to obtain the non—
linear effect that thickness might have on the undamped torsional oscil—
lations of a given plan form.

In reference 6, Garrick and Rubinow make use of the theory of small
perturbations to investigate the air forces on a thin finite wing
ogcillating in a supersonic gtream. For convenience the boundary—value
problems for the velocity potential for a three—dimensional surface
(finite wing) moving at supersonic speed are classified into two types
and referred to as "purely supersonic" and "mixed supersonic." The
purely supersonic boundary—value problem refers to regions of flow
where no interaction bstween the flow on the upper and lower surfaces is
present. In this case the surfaces can be treated separately and the
boundary—value problem for each surface can be gatisfied by source and
sink digtributions. The source and sink distributions for each surface
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are known functions of the plan form and profile of the wing. Conse-—-
quently, the velocity potentlals in the purely supersonic region can
always be expregged in the form of surface integrals with known
integrands.

The mixed—supersonic boundary—value problem refers to regions where
interaction between the flow on the upper and lower surfaces is present.
This problem cannot be golved by a distribution of sources alone over
the wing surface but in general can be gatisfied by use of doublet
distributiong. The mammer in which the doublets are to be distributed
(or the distribution function) depends on the camber of the wing and on
the plan form of the region of the wing where interaction between the
flow on the upper and lower surfaces is present. In order to find a
required distribution function it ig usually possible to make use of the
given boundary conditions and express the distribution function as the
unknown function in an integral equation.

It may be appropriate to mention that Evvard, reference 7, has
recently developed, by conasideration of a source distribution over the
entire upwash field, a time—dependent velocity potential that may be
applied to certain edge problems. In reference 8 Harmon made use of
this development to derive some stability derivatives for thin
rectangular wings at supersonic gpeeds. The velocity potential derived
herein for the slowly oscillating case can be shown to bear a relation—
ship to the sum of three potentials employed by Harmon, namely those
due to (1) constant vertical motion, (2) accelerated vertical motion,
and (3) pitching motion,

SYMBOLS
¢ disturbance—velocity potential
¢l potential function of a moving source defined in

equation (7)

¢2 potential function of a moving doublet defined in
equation (16)

¢N potential function due to distribution of sources in
region N of figure 1

¢T potential function dve to distribution of doublets in
region T of figure 1

X, ¥, 2 rectangular coordinates attached to wing moving in nega-—
tive x~direction
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Zy function defining mean ordinates of any chordwise section
of wing such ag at y = y, as shown in figure 1

w(x,yl,t) vertical velocity at surface of wing along chordwige
gection at y = ¥i; (99)
oz
z=0
£, 1 rectangular coordinates used to represent space location

of sources or doublets in the xy-plane

X, gbscissa of axis of rotation of wing (elastic axis) as
shown in figure 1

t time

a angle of attack

a time derivative of a

v velocity of main stream

c velocity of sound

M free—stream Mach number (V/c)

B = M2 -1

T T s T, functions defined with equation (7)

W(e,n) function usged to represent space variation of source and
doublet strengths

w(t "'Tl) functions used to represent time variation of source and

w(t — 72) doublet strengths

w angular frequency

b one-half cord

h one—half span

A aspect ratio <%>

4]
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F(&,n), £(e,n) functions used to denote doublet distributions

density

pressure difference, measured positive downwards, defined
in equation (24)

values of p 1in regions N &and T, regpectively, of
Tigure 1

aerodynamic moment, defined in equation (25)

in—phase component of aerodynamic-moment coefficient
defined in equation (30)

out—of—phase component or (torsional-damping) aerodynawmic-—
moment coefficient, defined in equation (31)

total—torsional—damping coefficient

mechanical—damping coefficient; g, corregponds to the

ugual logarithmic decrement

wing density parameter <ZE§>
b

mass of wing

radius of gyration divided by b; <\/-¥£— >
mb?

moment of inertia per unit length of wing about elastic
axis

flutter coefficient

natural angular frequency of torsional vibration about
elastic axis
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ANALYSTS

Consider a thin rectangular wing moving at a constant supersonic
speed in a chordwise direction normal to its leading edge. In accord—
ance with linear theory the boundary—value problem for the velocity
potential is treated at the plane of the wing. For the portion of the
wing between the Mach cones emanating from the foremost point of each
tip, region N in figure 1(a), the boundary—value problem-involves only
the purely supersonic flow; and for the portions of the wing within these
Mach cones, regions T in figure 1(a), the boundary—value problem involves
the mixed supersonic flow. Thus the solution to the present problem pro—
poses the use of the two types of boundary-value problems discussed in
the introduction. :

Boundary—value problems for velocity potential: for a rectangular
wing.— The differential equation for the propagation of small disturbances
that must be satisfied by the velocity potential in both regions T
and N (referred to a uniformly moving coordinate system as shown in
fig. 1) is (equation 4, reference 6)

s ‘
N2 2 2
;£.<Fi_-+ v §—> 6 = op + o7 + 9 g (1)
o 2 \ot ox ax2 ayQ Sz 2

The boundary conditions that must be satisfied by the velocity potentials
may be stated as follows: (a) In regions T and N the flow must at

all times be tangent to the wing surface and (b) in regions T the pressure
mugt fall to zero along the wing tips and remain zero in the portion of
the Mach cones emanating from the foremost points of the wing tips not
occupied by the wing. (As customary with linear boundary conditions the
effects of thickness and camber are separated. In particular, in the
nongtationary case the linear thickness effect ig of no significance and
i1s not considered here. The important camber effect 1s characterized by
the conditions that the perturbation pressure, the perturbation velocity
in the free—stream direction, and the perturbation—velocity potential are
all antisymmetrical with respect to the reference plane, whereas the
perturbation velocity normal to the reference plane is symmetrical.
Accordingly, the boundary condition of zero pressure in the side wake may
be stated as zero perturbation velocity in the free—sgtream direction. 1In
view of these antisymmetric characteristics it is only necessary to derive
the perturbation—velocity potentials for either the upper or lower surface
of the wing. The upper surface 1s chosen for the derivationsg herein.)

With the boundary conditiong stated as in the preceding paragraph,
the difference in the two types of boundary—value problems involved
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ig in the additional conditions stipulated in condition (b) that must
be satisfied in region T,

The condition of tangential flow may be expressed analytically as

p aZm Zyy
= wx t) =V — + —
<Bz> (31:8) =V 57+ 5% (2)
z=0.
where Z;, 1is the function defining the mean ordinates at any chordwise

section of the wing. For the particular case of the wing performing
small sinuscidal oscillations of maximum amplitude %, about the span—

wise axis x = x;, the equation for Z;, may be written as (see fig. 1(b))

Zm = cx,(x —_ XO_) = a,oeiwt (x - x0> (3)

Substituting this expression for Z = into equation (2) gives for this

w(x,t) = Vo + cl(x - xo> (4)

Equation (4) indicates that the vertical motion of a wing moving for—
ward and at the same time performing sinusoidal oscillations about a
spanwise axis 1s equivalent to the superposition of the vertical motion
of two similar wings moving forward, one at an instantaneous angle of
attack and the other rotating about the gpanwise axigs x = X, at an

ingtantaneous rate of rotation. Since the differential equation (1)
is linear, the velocity potential satisfying equations (1) and (4) may
be congidered as the sum of two potentials: +the first corresponding
to the first term of the right—hand side of equation (4) which
hereinafter is denoted by ¢a and the second corresponding to the

gecond term of the right—hand side of equation (4) which hereinafter
is denoted by ¢d° The symbolic forms of the velocity potentials for

the regions N and T may therefore be written as

i = P P (5)
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and
¢T = ¢Ta, + ¢T&, (6)

Derivation of ¢NJ— Reference 6 shows that the boundary—value

problems for unsteady motion in the purely supersonic region (region W)
may be satisfied by distributions of moving sources. The potential at
any point (x,y,z) due to a moving source of strength w(t), varying only
with time, located at point (&,7,0) is given in equation (7a) of refer—
ence 6. In the present notation the expression for this potential may
be written as

¢l=w(t—'rl) +w(t—72> 1)

M(n =) (e - n)

where

. _Mx-8) \/(n—nll(ng—n)
cpe Bc

_uz—t) , V(= m)(np =)
cpe Be

y_% \/(x__g)Q_BEZQ

=)
(W
i

sl 612 _ 52,2
T =75 B \/(x ) B
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The integral form of the velocity potential at any point (x,y,z) due to
a distribution of such sources over the ¢ n—plane is

x—Bz )
B(x,7,2,8) = === w(E,n)py dn at (8)
: 0 nL

where W(t,n) represents the space variation of source gtrength.

The limits and n, are the intersections of the En-plane

M

1
and the upstream-opening Mach cone with vertex at point (x,¥,2z). Thus

the velocity potential at point (x,y,z) is affected only by the sources
in the &n—plane that are within this Mach cone. (see fig. 2(a) for

the limiting case 2z = 0.)

In order to obtain ¢Nd, for an oscillating flat wing, the time

variation of source strength w(t) is defined as follows:
W(t) - eiU.)t
This form for w(t) gives for the numerator of egquation (T)

T T
w(t =T1) +w(t =Tp) = ela)(t l)+ ela)(t 2)

e
= Eeiwt e 2 cosg (_DT_.E_;_T_J- (9)
2

The space variation of source strength is defined as

W(E,n) = —Vog (10)
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If the expressions given in equations (9) and (10) are substituted into
equation (8) and z " is made zero, the following equation for the velocity
iwt

'potential on the upper gurface of the wing, with a = o e

o > 1s obtained:

_ da

(x—¢)
FralX,7,8) = %%fx J"‘? o CB° cos g \/(n ~ Tll)(“g - n) an at
O yn1

\/(" =) (n - 7 (11)

The integrations indicated in equation (11) can be carried out in
the form of a series of Bessel functions as in reference 3; however, this
is not required hsre since, as isg pointed out in the introduction, only the
first—order effects of the frequency w are necessary in the present
discussion. The terms involving higher powers of the frequency can be
deleted by expanding the integrand of equation (11) into a power series
in ® and dropping the terms involving this parameter to powers higher
than the first, When this eéxpansion i1s made, the indicated integration
in equation (11) can be carried out in closed form. There is obtained

I
|§
TN
|
N e
ol
no
Q
o
L

it
Ll G 2>
B 262c

or, if the out—of—phase component iux 1is denoted by «,

Pho % I x = T o2 (12)
2330

Note that even though the expression for Pne in equation (12) does

not contain the integrated effects of higher—order terms in w, 1t remains
sinusoidal with respect to time.
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In order to obtain ¢N& it 1s only necessary to change the definition
of W(t,n) 1in equation (10). In this case

W(Em) = taxg(§ = x) (13)

Substituting the expressions from equations (9) and (13) into equation (8)
and letting 2z approach zero yields

v N
x g, (E=x)e© cos—-\/n—n M, =1
Pra = 182 ° e VU~ ) (e )dn at (1)

0 ' - -
1 \/(n anng n)
which, after expansion to first power of w, yields

iaM
5 _imleﬂg (E‘XO)[°C—I;§(X—EEI
o = 5 dn d¢
i .

1 \/(n “ ) (2~ )

or

P = 29 x(x ~ 2xy)
= 55 (° - 2xg) (15)

Equations (12) and (15) may be substituted into equation (5) to obtain the
complete expression for ¢N at the upper surface of the wing.

Derivation of ¢T.— As pointed out in the introduction, distributions

of doublets may be used to satisfy the boundary-value problem in the region of
mixed supersonic flow (region T). The type of doublet required is that with
axis normal to the reference plane. It will be recalled that the potential

of sucn a doublet may be obtained from the potential of a source, located

in the reference plane, by a partial differentiation of the source

potential with respect to the direction normal to the reference plane.
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If such a differentiation is applied to the potential of a moving source

in the ¢ n—plane (equation (7)), the following expression that may be shown
to satisfy equation (1) is obtained:

B = &g gy Doz L) £ (0~ T2) (26)

VO ) (e =)

where now W(&,n) refers to doublet strength.

In order to obtain ¢Ta for the oacillating flat wing it is convenieat
to assign to the functions w(t —T1) + w(t —To) and W(¢,n) the

expressions given in equation (9) and equation (10), respectively.
Substituting these expressions into equation (16) gives

. 1
- 1% (x—t)

o = —2Va 7 °*° o \Kf] ~ nl>(n2 ~ n)
1M

> \/(n - nl)(n2 =)

) _QVGBQZG CBQ(X-E) ® sin é%\/Zq - "1)("2 "ﬂ)

2 (1= m)(re =)

\

) cos =% ("~ m) (e )

[(n - nl>(n2 - n)] 3/2 )

(17)
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Expending the terms involving o in equation (17) into a power series
to the firgt order of w glves

oM
1 -2 (x - p)

,En - nl)(n2 - nﬂ 3%

Po = —2Vaplz

_oVp2a, é Moux 1 L Mo £

CBE> Kn = ny)(np - HHS/E o* Kn =) n):, 2

(18)

FEach of the two terms within the braces in equation (18) can be shown to
satisfy equation (1) to the first order of w. Furthermore it can be seen
that, to the first order of , the potential of a moving doublet may be
considered as a superposition of two doublets of the stationary type; one

of strength proportional to a — Mg% and the other of strength proportional
cp
to Mg—g.
082

The potential ¢Ta composed of distributions of doublets of the types

in equation (18) may be written

AR, / f TSR
7 3/2
n—n (n2 )]
L// m)dn ag (19)
19
cBn 3/2
[n—nl)(n ):l
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where the integration is to be extended over the wing surface S included

in the fore cones with vertex at (x,y,z) (see fig. 2(b) for the limiting

cage z = 0) and where F, and Fo are functions describing the manner in
which the doublets are to be distributed in the region S and must be deter—

mined in such a manner that the boundary conditions (a) and (b) will be
satisfied.

The normal procedure of determining Fl_ and Fg would be to formulate

an integral equation by imposing the boundary conditions on equation (19);
however, this procedure is tedious and difficult. It can be circumvented
here by making use of known solutions to similar problems. The integrand

of the first integral in equation (19) is recognlzed to be the same as that
in the integral form of the velocity potential for a simdler wing at constant
angle of attack, and the integrand of the second Integral is recognized to
be the same as that in the integral form of the velocity potential for a
similar wing undergoing a constant rotation about its leading edge.
Furthermore, the boundary conditions for these cases can be stated precisely
as conditions (a) and (b), stated herein, for the oscillating wing. The
distribution function and the velocity potential at the wing surface for

the rectangular wing at constant angle of attack can be readily obtained
from the known distribution of 1lift for this case. The distribution
function and velocity potential at the wing surface for the rectangular
wing undergoing a constant rotation about its leading edge can be obtained
from the wing at constant angle of attack by linear superposition. The
distribution functions and velocity potentials at the wing surface for

both these cases are derived in the appendix. The value of ¢Ta

(equation 19) at the wing surface can be easily deduced from these results;
that is,

B (x,y,t) = % <oc - M—"%) VBy(x — By) + x sin ™t /E%
cB

3

cB n

+ LT ; 2By VBy(x — By) + x° sin_l,/ %%]
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- 2V [\/By(x —~ By) + x siml @]

Br

- Mg“—?) (x + 28y) \/By(x — By) + 3xPsin |/EX (20)

3nB x

In order to obtain @pg 1t is convenlent to define W(e,m) as in

equation (13). Substituting equations (9) and (13) into equation (16)
yields ‘

)
—24(E — xg) B oo gy \/(1rl ~n)(ne =) (21)

o \/(n - nl)(ng )

b

lO/

go

Carrying out the indicated differentiation and expanding to the first
power of o results in

o = —2p°za £ = X0 5
[(n - nl)(n2 - ﬂ 3
= 25228 %0 S - 2 7 (22)
[(n =) (" - n)] 3 [(n =n)(n, - n)] /

The two expressions in the right side of equatlon (22) have the same form
as the expregsions in the right side of equation (18). The following
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integral expression‘for ¢T& 1s therefore of the same form as the
integral expression for ¢TCL (equation 19) and the functions F3

and F) cen be determined by the procedure glven for determining F
and Fz:

b = Bzduxg F3(§,'q)d§ dn  pzd [ EF), (E,m)a € dn
S 3/2  n s R

5 [(n =), - n}l n =) (v, - n)] 3/2

The expression for ¢T& at the wing surface can therefore be deduced from
the results in the appendix to be

B X

.

i T ‘
Pre, = - 0 \By(x — By) + x sin ™ EZ}

-

. _ ) _
+ g% EE;B—EEX VBy(x — By) + %r sin™t \’%g

.

= % [;X = 2By ~ 6xp VBy(x - By) + x(x - 21:0) sin—t \/E—Xi]

3
(23)

Equatlons (20) and (23) may be substituted into equation (6) to obtain @p
at the wing surface.

Aerodynamic moment.— The local pressure difference between the upper
and lower surfaces may be written as

p = —2p<§’E + V gg;) (24)

t

-
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The aerodynamic moment on the entire wing about the axis x = X, measured
in the positive clockwise direction, is then (see fig. 1)

ffN(x-—xo)deydx+2 T(x—.x()pTdydx (25)

If all linear dimensions involved in equations (24) and (25) are referred
to the chord 2b, these equations become, In a sense, nondimensional and

can be written

B, VP . (26)
3t

and
= 16b3 /[\1 (x-xo)deydx+16b3 /‘/1:( —xo)pTdydx
(27)

Putting in the appropriate limits of integration (see fig. 2) results in
the following equation for the total aerodynamic moment :

M_ = 1603 J;lJ:/IB (x—xo)pN.dydx+16b3Lfol/;X/B (x-x&pT dy ax
. (

If the nondimensional forms of Py and bp are computed from

equations (12), (15), (20), and (23) and substituted into equation (28),
there is obtained a complex expression for M, that may be written as

28)"

My, = B3Vl + m@ (29)
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where

- e [ ) - (o) e

is the in-phase component of the aerodynamic-moment coefficlent, and

M, = —%— 263(1 - 3%y + 3x02> -B(2 - 3x(9 - 26%x,(3x, — 2) + @Xo ~3)
387k ' 2A
(31)

is the out—of-phase or torsional—damping aerodynamic-moment coefficient.

The expression for Mh in equation (31) represents the central result

of the present investigation because the conditions of torsional stability
or ingtability depend directly on the sign and magnitude of Mh' It will

be noted, in equation (31), that M), may undergo changes in sign as any
one of the parameters B, Xg, and A 1s varied.

Although equation (31) has been derived for the condition that the
intersection of the Mach cones from the foremost points of the side edges
is off the wing, it can be shown that it remains valid as long as the Mach
cone from one side edge does not iIntersect the opposite side edge. When a
side edge 1s intersected by the Mach cone from the opposite edge different
velocity potentials from those explicitly derived herein are required for
portions of the wing behind the points where the Mach cone intersects the
edge. The derivation of these potentials is not considered here.

Total torgional—damping coefficient and some selected calculations of
stability conditiong.— If mechanical damping is assumed to exist about the
axis of rotation, for example as the hinge friction in an alleron instal—
lation, and if this damping i1s converted to coefficient form as in
references 3 and 9 and combined with the aerodynamic damping, the total
torgional—damping coefficient may be written as

2
1, = My (B,%g,k,8) + ur@e(“_g) g,

w
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or

' 1 g'mhx 2
My = Mh(B’xo’k‘.'A) + I—{EHI‘G’ —v- &y, (32)

Negative values of Mh' indicate dynamic Instabllity that may
correspond to single—degree torsional flutter, Positive values of Mh'

indicate stable conditions and between the stable and unstable conditions,
that is when Mh‘ vanishes, a borderline state of unstable equilibrium

separating damped and undamped torsional oscillatlons occurs. Since the
term involving g, in equation (32) is always positive, negative values
of Mh' and the vanishing of Mh' are associated with negative values

only of M), (equation (31)).

With the exception of aspect ratio A, the effects of the individual
paramsters in equation (32) are presented in references 3 and 4. The
effect of aspect ratlo for some particular values of the other parameters
1s briefly discussed in the following paragraphs.

The range of values of Xy and B (and M?) for which Mh' vanishss
when 8a. ig asgumed to be zero and A hasg different selected values is

shown plotted in flgure 3. The reglong inside the different curves give
the range of values of Xxg, Bg, and M° 1n which instability might occur.

The curve for infinite aspect ratio agrees with that given in figure 21 of

reference 3 and that given in figure 2 of reference 4. It will be noted
that decreasing the aspect ratio has a highly stablilizing effect.

The dashed portions of the curves in figure 3 correspond to aspect
ratio and Mach number combinations that cause the Mach cone from the
foremost point of one tip to intersect the opposite tip ahead of the
trailing edge.

In figure 4 the quantity M, multiplied, for convenience, by 3Buk is

plotted as a function of M for the values of A selected in figure 3.
The ordinates of these curves are proportional to the amount of negative
aerodynamic damping avallable for glven Mach numbers and for given values
of ths frequency parameter k. The stabilizing effect of decreasing aspect
ratio is apparent in thlg figure.

Corresponding values of the flutter—speed coefficient V/bmm and
aspect ratic A for which Mh' vanishes for some selected values of the

parameters Xg, gu M2, u, %, and ru2 are plotted in figure 5.
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The regions above these curves give the range of values in which insta—
bilities might occur.

It should be recalled that thickness effects have not been considered
in the present discussion. Second—order thickness effects may be of
conslderable significance in regard to undamped torsional oscillations of
wings of finite or infinite aspect ratio.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., March 28, 1949
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APPENDIX

VELOCITY POTENTIALS FOR TIP REGION OF RECTANGULAR

WING IN STEADY SUPERSONIC FLOW

It can be shown, as in reference 10, that at points in the xy—plane
the perturbation—-velocity potential in a supersonic stream due to doublets
in the xy—plane distributed according to a distribution function £(e,m)
is proportional to the distribution function; that is,

#(x,y,0) = lim Vofz f£ £(E,m)dy dt
0 BX - £)2 ~ B3y — n)® - 3222]3/2

sxt(x,7) | (A1)

where the positive sign applies to the upper surface of the region S and
the negative sign applles to the lower surface; that is, the direction from
which 2z - 0. Waen the appropriate distribution function can be found, such
doublet distributions can be uwsed to satisfy boundary—value problems, in the
xy—plane, for vanishingly thin airfoils at vanishingly small angles of
attack. In the case of a rectangular wing placed in a supsrsonic stream
flowing from the negative x—direction, with its leading edge normal to the
free—stream direction, the added velocity in the free—stream direction In
the tip region can be obtained from the expression derived for the added
pressure difference, in this region, in reference 11. In the present
notation .this expression for pressure difference is

2
va .@2 = E_G'_EV_ Sin—l "El
X

ox Br

or

P _; %9 sinL | [BX (A2)
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If ¢ is eliminated from equations (Al) and (A2), the following differ—
ential equation for f(x,y) is obtained:

ﬂ of = VG sin—t \/EZ (A3)
dx Bx X

The expression for af(x,y) or @(x,y) can now be obtained by a partial
integration, with respect to x, of equation (A3). This integration gives

ne(x,5) = P(x,y) = E?[\/ayoc — Fy)+ x stnt \/%ry] (ak)

For the rectangular wing rotating about its leading edge the
distribution function for the tip region can be obtained by a linear
superposition of the function given in (AL); that is,

* o oova X))y -1 [By
—1 A f(x — g)dg = B A V%ylzx -t) - Bi’ + (x —¢) sin — 34t

X — &

- Béf% F——-_X S 2P \By(x - By) + 3 stn \/i—y] (45)

If in equation (Ak) « is replaced by a — % and if in equation (AS)

M cs”
a 1is replaced by —7% the sum of the resulting equations will yield
cB

equation (20) of the text. Similarly, if in equation (AL) Vo is
replaced by —xo% and if in equation (A5) Vo is replaced by &, the

sum of the resulting equations will yield equation (23) of the text.
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(a) Plan form (xy-plane).

(b) Section y = ¥y (xz-plane).

Figure 1.- Sketch illustrating chosen coordinate system
of alrfoll oscillating in torsion.
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Figure 2.- Sketch illustrating areas of integration for "purely supersonic"
and "mixed supersonic" regions of flow.
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